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The viscous compressible flow in the vicinity of a right-angle corner, formed by 
the intersection of two perpendicular flat plates and aligned with the free stream, 
is investigated. In  the absence of viscous-inviscid interactions and imbedded 
shock waves, a theory is developed that is valid throughout the subsonic and 
supersonic Mach number range. Within this limitation and the additional assump- 
tions of unit Prandtl number and a linear viscosity-temperature law, a consistent 
set of governing equations and boundary conditions is derived. The method of 
matched asymptotic expansions is applied in order to distinguish the relevant 
regions in the flow field. 

I n  the corner region the Crocco integral is shown to apply, even for a three- 
dimensional flow field. The equations governing the flow in the corner layer con- 
sist of four coupled nonlinear elliptic partial differential equations of the Poisson 
variety. Since they do not lend themselves to analytic solution, numerical 
methods are employed. Two such methods used here are the Gauss-Seidel 
explicit technique and the alternating direction implicit method. The merits 
of both techniques are discussed with regard to convergence rate, accuracy and 
stability. The calculations show that in cases where the Gauss-Seidel method 
fails to give converged solutions, owing to instability, the alternating direction 
implicit method does provide converged solutions. However, in cases where both 
methods are convergent, there is no appreciable difference in convergence rates. 
The numerical calculations were done on a CDC 6600 computer. 

Results of calculations are presented for representative compressible-flow 
conditions. The extent of the corner disturbance is controlled by the Mach number 
and wall temperature ratio in a manner analogous to  the two-dimensional bound- 
ary layer. A swirling motion is noted in the corner layer which is influenced to a 
great extent by the asymptotic cross-flow profiles. The skin-friction coefficient 
is shown to increase monotonically from zero a t  the corner point to its asymptotic 
two-dimensional value. For cold wall cases, this value is approached more rapidly. 
The asymptotic analysis indicates that for even colder wall cases, not considered 
here, an overshoot is possible. 

Present address: Department of Fluid and Heat Transfer, Negev University, Beer- 
Sheva, Israel. 
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1. Introduction 
The three-dimensional viscous interaction in the neighbourhood of the inter- 

section of two perpendicular surfaces is of fundamental interest. Since this 
geometry manifests itself in many practical configurations, such as wing fuselage 
junctures and wing-fin assemblies, a knowledge of the flow field in the vicinity of 
the intersection is essential for a complete understanding of the physical nature 
of the problem. 

The viscous flow along a corner has previously been investigated in great detail 
for the limiting cases of incompressible and hypersonic flow. The existing theo- 
retical and experimental investigations (see e.g. the review by Bloom, Rubin & 
Cresci 1970) have discussed the heat transfer and pressure behaviour. For high- 
speed flow, overshoots have been found. They do not appear in the incompres- 
sible case. For the cross-flow velocity, a swirling motion has been obtained for 
low-speed flows, with vortex formation possible in high-speed flows. Unlike high 
Reynolds number viscous flows over bodies with small transverse curvature (for 
which two-dimensional boundary-layer theory is generally applicable), the 
corner geometry is inherently three-dimensional. 

It is generally not realized that the viscous flow along a corner, even asymp- 
totically far downstream from the leading edge, constitutes a ‘strong’ inter- 
action in the sense that the boundary-layer induced perturbations of the inviscid 
flow field must affect even the lowest-order analysis for the viscous three-dimen- 
sional flow in the immediate corner region. Furthermore, the proper analytic 
model of the flow can be obtained only when these boundary-layer displacement 
effects are taken into account. 

Rubin (1966) was the first to formulate the low-speed corner problem correctly; 
subsequently, Pal & Rubin (1971) and Rubin & Grossman (1971) evaluated the 
asymptotic characteristics and numerical solutions for the incompressible corner 
region. Their results show that the skin-friction coefficient a t  the wall increases 
monotonically from zero at the corner point to its asymptotic two-dimensional 
value within three to four two-dimensional flat-plate boundary-layer thicknesses. 
A crosswise influx is also noted, and a swirling motion is found to exist in the 
corner layer. 

Published results for the hypersonic case where viscous-inviscid shock inter- 
actions occur indicate the presence of overshoots in heat transfer and skin friction 
in the vicinity of the corner intersection as well as the formation of streamwise 
vortices. Thus, a fundamental difference exists between the low-speed and hyper- 
sonic corner interaction problems. Subsonic and low supersonic flows were treated 
by Bloom & Rubin (1961) by integral methods. Their solutions were not 
entirely satisfactory, as they did not consider the complete cross-flow behaviour. 

In  this paper the effects of compressibility on the corner-layer analysis are 
considered. The governing equations, the associated boundary conditions, and 
the numerical solutions are presented. The theory applies for the entire Mach 
number range (incompressible to supersonic) in the absence of viscous-inviscid 
interactions. A boundary-layer type of analysis is employed in a manner 
similar to the incompressible-flow analysis of Rubin (1966). In  this regard, the 
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FIGURE 1. (a) Corner-flow geometry. ( b )  Section MON (outer flow co-ordinates x, y,z). 

Region Boundary-layer similarity co-ordinates 

y== Re* p@dy s.” - 
E i  I1 Tj  = 7/ (2X)* ,  

11111 111 5 = Z/( 2 x ) 4  z = Re* 1 p zDdz 

g = z Re-*/( 2x)* = y Re* /( 2x)*, El 

solutions are valid several boundary-layer thicknesses downstream of the lead- 
ing edge. 

Consider the viscous compressible flow along a right-angle corner formed by 
the intersection of two semi-infinite flat plates. The schematic diagram (figure 1)  
depicts the flow geometry. Various viscous and inviscid regions are distinguished. 
The undisturbed velocity vector U, is directed along x. The relevant co-ordinates 
defining the different regions are given in table 1. Here Re = pm U, L/p,  and pzD 
is the two-dimensional density, defined explicitly in 9 3. 

The laterally extending boundary layers, shown singly cross-hatched, are two- 
dimensional far from the corner (i.e. x + 03: f finite), and quasi-two-dimensional 
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Potential flow Boundary layer (11) Corner layer 

2 > 0,  y > 0,  z > 0 
IL^ = O(1) 

Y = O(1) 

2 > 0,  P > 0 , z  > 0 
7j = F/(217:)+ = O( 1) 

17: > 0, Y > 0,  z > 0 
!q = Y/(217:)* = O(1) 

5 = 2/(217:)4 = O( 1) = [ [ P ~ D G )  Re* 

z = O(1) Y = yRe*, Z = zRe4 

TABLE 1 

in the intermediate region, x ,  ?j finite. The corner layer, z -+ O , r ,  5 finite, shown 
doubly cross-hatched, is completely three-dimensional in character. Asymptotic 
methods can be used to join the different regions (Rubin 1966). 

It is the three-dimensional corner-layer region that will be considered here. 
The governing equations for this region will be shown to reduce to four nonlinear, 
Poisson-like elliptic partial differential equations plus one algebraic relation. 
Since numerical methods will be required to obtain the final solution, finite bound- 
aries (e.g. 5 = 2, = 10) must be specified for the corner region in order that 
computational times are acceptable. Therefore, the proper far-field boundary 
conditions are determined by considering analytically the asymptotic behaviour 
of the corner-layer equations for large 7 and 6. In  this regard, the symmetry in- 
herent in the geometry plays an important role. 

The appearance of an arbitrary constant in the asymptotic formulation requires 
that an iteration scheme be employed in order to solve uniquely the system of 
equations. An optimum value of the constant x is determined by minimizing the 
effects of mass source terms artificially introduced into the analysis. 

2. Derivation of equations 
Preliminary analysis 

In  order to distinguish between the different regions, shown in figure 1, the 
following convention (given by Rubin 1966) isprescribed. Potential-flow variables 
are denoted by upper-case letters, boundary-layer quantities by barred lower- 
case letters, and corner-layer properties by asterisks. 

The complete non-dimensionalized governing equations for an arbitrary region 
are given below. The flow properties have been non-dimensionalized in the follow- 
ing manner: the velocity componentswith respect to U,, the density, temperature 
and viscosity with their respective free-stream values p,, T,, p,, all lengths with 
respect to (L)  some characteristic dimension, enthalpy with respect to U2, 
and pressure with twice the dynamic pressure U2. 

Continuity : (P), + ( P V ) ,  + ( P W ,  = 0; (2 . la )  

P(U% + 21% + WU,) = -Pa,+ ( W e )  {[%% - W I ,  + [IC(u, + 21,)Iu + 

PW, + VV?, + wv,) = - P~ + ( w e )  GW, - 34, + rp(v, + w ~ ) I ~  + rp(u2/ + v,)iZ1; 

x momentum: 

+ w&J; 
( 2 . l b )  

y momentum: 

(2.lc) 



equation of state: 

p = e p h .  
Y 

Subscripts denote partial differentiation and 

A = u,+v,+w,, 

R e  = pm U, L/pm is the Reynolds number, and CT = pcp/k is the Prandtl number. 
cp ,  c, and y are assumed constant. The enthalpy and static temperature are re- 
lated by h = T / ( y -  1) M2,, where M, = U,/(yRT,)* is the Mach number. It is 
further assumed that the coefficient of viscosity is proportional to the temperature 
and that the Prandtl number is equal to unity, i.e. 

p = T ,  c ~ =  I .  (2.2) 

The wall temperature is constant throughout. 
As in the analysis of Rubin (1966)) the following series expansions are assumed. 
(i) Potential A ow: 

M 

n=O 
~ ( x ,  y ,  x )  = Re-4" IIn(x, y ,  z ) .  (2.3) 

(ii) Boundary layer: 

(a) x > 0, y > 0 , z  > 0 (region 11, figure I )  

M 

n=O 
n(x,  y,z) = Re-an?i,(x, Y , z ) ;  

( b )  x > 0, y > 0, z > 0 (region 111, figure 1)  

M 

n=O 
n(x ,  y ,  x )  = Re-in?in(x, y ,  2). 

(iii) Corner layer: 
M 

n=O 
~ ( x ,  y, x )  = C Re-Bnnz(x, Y ,  2). 

( 2 . 4 ~ )  

(2.4 b )  

(2 .5 )  

Here 71 is any flow property, e.g. ZL, v, w,p ,  h, . . . . The zeroth-order potential flow 
is a uniform stream, so that U, = 1, V, = Fo = 0, etc. 

Boundary-layer equations 

The equations governing the first-order boundary layer are obtained by putting 
the series (2.4) into the general Navier-Stokes equations (2.1) and retaining 



758 B. C. Weinberg and 8. G. Rubin 

first-order terms in Re-3 only, so that the additional no-slip condition neglected 
in the potential flow is satisfied. 

For the boundary layer in region I1 (cf. figure 1), the familiar two-dimensional 
equations modified by the inclusion of a cross-flow (wl) momentum equation are 
obtained to first order: 

(PoUo)z+ (POZ.’I)P = 0, ( 2 . 6 ~ )  

P O ( ~ O ~ O , + Z . ’ , ~ O P )  +Po, = (POZOP)P, (2.6b) 

POP = 0, ( 2 . 6 ~ )  

(2.6d) 

- 

po(EofEo, + V,fE,y) -U0Poz = 

(2.6e) 

P o ( ~ o W l z + % % )  +Pl, = (P0WlP)Y. Wf) 
The appropriate boundary conditions are a t  the surface Y = 0: Eo = Fl = W1 = 0 
and Eo = T,/[(y- l)N%]; asymptotically as Y -+ co, Eo-+~l,~fEo-+ l / [ (~ - -  1)M2,] 
and w1 asymptotes to a potential value to be determined. 

The energy equation may be integrated, consistent with assumptions (2.2), 
to yield a well-known Crocco integral. Imposing the boundary conditions, the 
following relationship for temperature is obtained: 

The solutions of the streamwise momentum equation and the continuity equa- 
tion can be achieved with the aid of the density transformation of Howarth- 
Dorodnitsyn (see Stewartson 1964): 

where 

The primes denote differentiation with respect to  7. The solution exhibits a 
normal or outflow velocity ‘ul, which is absent in the zeroth-order potential flow. 
The asymptotic value of El is given by 

v1 + p / ( 2 x ) $  as ~;i -+ co, - 

where /3 = T,K+-MMZ,~”(O), Y-l 
2 

K = 1.21678, f”(0) = 0.469600. 

Analogous results hold for the boundary layer in region 111. 
Bloom (1966) and Libby (1966), independently, were able to deduce the 

compressible cross-flow velocity W ,  (as z + 0 in region 11) by solving (2.6 f )  and 
employing symmetry arguments. Later, in a more complete investigation of the 
nature of the asymptotic flow field of the incompressible corner layer, Pal & 
Rubin (1971) determined the entire asymptotic behaviour of the cross-flow 



Compressible corner flow 759 

expansion. In  the present analysis, the method of Pal & Rubin is extended to 
include compressibility effects, with Bloom’s and Libby’s results recovered in a 
first approximation to the cross-flow velocity. 

(2 .8h)  

and A* = -3p;. 

Note that the pressure pg appearing in the crosswise momentum equations is 
of second order. For the case under consideration (two intersecting flat plates), 
p; is constant and equal to its free-stream value. 

Combining the energy and streamwise momentum equations, we find 

Po*(uo* Ho*X + vl*Ho*Y +wl.Ho*Z) = (P.,*HzF)P + (POHo*Z)Z7 (2.9) 
where H,* = h$ + &@. 
Comparing (2.9) with (2.8b) and withp;, = 0, it  is observed that a solution to (2.9) 
satisfying all the boundary conditions is once again the Crocco integral. In  terms 
of the temperature this becomes 

(2.10) 

It is important to point out that the Crocco integral is applicable here even 
for a three-dimensional flow, and is independent of the normal and spanwise 
velocities. This result greatly simplifies the ensuing analysis. The temperature 
has now been determined as a function of the streamwise velocity u;, and repre- 
sents a solution for the energy equation. Furthermore, from the equation of 
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state, and with the model-fluid assumptions, the density and viscosity relation- 
ships become 

P o - o -  * - t* - c 9 P o -  * - 1 l o -  t* - IlC. (2.11 a,  b )  

In  order to simplify further the subsequent calculations, similarity variables 
are defined : 

u = uo, * v = v,*(2x)4, w = w,*(2x)t, 

P = d 2 x ,  P = Po*, P = P& 

and y = Y/(2x)4  6 = 2/(22)6. 

In addition it is also convenient here to introduce the new variables (see Rubin 
& Grossman 197 1) 

$ = yu -v ,  (2.12a) 

6 = $q-$c ,  (2.12c) 

A = $,+$g. (2 .124  

+ = <u-w, (2.12 b)  

The second-order pressure pz  appearing in (2.8.f) and (2.8g) can be eliminated by 
cross differentiation of the two equations. In  addition, derivatives of p and 
are replaced by derivatives of C with respect to u. Thus, p, becomes aC/au u,, and 

2 

a2c - = c,, = - (y -  1) MZ. 
au2 

In  the incompressible limit 

c = 1, c, = c,, = 0. 

With these definitions, the following set of equations results: 

c2v2u + $u, + $us = - cc,,(u; + ui), (2.13a) 

c3v20 + c[$e, + $e, + 2 4 0  + yuc - c t q ~  
= C,(U,[$$< + $$g - 5u2 - 2C2(A, + 0,)l- "@$, + $$?/ - yu2 - 2C2(A, - 0,)l) 

+ C(A - 24,1+ [W, - $c) + $W., + $?))I CCU(U,N) - 2 4  - $p.,) 
+ c ( A  - 2 4 g l )  9 (2.13b) 

c ( A - 2 ~ )  = CU($u,+$ug). (2.13 c )  

In  order that numerical techniques may be applied to the corner-layer equations, 
the continuity and vorticity relations (2.12 c, d )  are cross-differentiated, to  yield 

(2 .134  e) V2$ = A, - O,, V2+ = 8, +A,. 
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These equations admit mass and vorticity sources, in the sense that unknown 
harmonic junctions P(?,{) and M(7,  {) can be added to (2.12c, d) ,  respectively, 
without changing ( 2 . 1 3 4  or (2.13e). Thesesource terms must beeliminated in the 
final solution. Further discussion of this matter will be presented later. 

Equations (2.13) and (2.14) constitute the set of five governing equations, 
consisting of four nonlinear elliptic Poisson-like partial differential equations 
and one algebraic equation. For their solution, conditions must be specified on all 
boundaries with asymptotic matching of the potential and boundary-layer 
regions. These relations will be discussed in 5 3. 

The theory developed here is not restricted to a geometry with a sharp right- 
angle intersection. A fillet is permissible at the corner intersection as long as its 
radius of curvature is small compared with the corner-layer thickness. Considera- 
tion of this geometry is given by Weinberg (1972). Significantly, the influence 
of the fillet is confined to a region of the order of the fillet radius. This indicates 
that the general flow behaviour will not be appreciably influenced by modifica- 
tions near the corner point. 

3. Asymptotic analysis and boundary conditions 
In  5 3 the appropriate boundary conditions for the corner layer are developed. 

Since the governing equations are elliptic in nature (as previously discussed), 
conditions must be specified at  all boundaries. In  addition to the usual con- 
ditions specified a t  the wall surfaces, asymptotic results are determined in order 
to match the corner-layer to the boundary-layer motions that exist along each 
of the two intersecting walls, and to an irrotational inviscid stream. This asymp- 
totic analysis allows for a finite computational domain, and reduces computer 
storage and calculation times. Furthermore, the inherent symmetry along the 
angle bisector 7 = { allows for a further simplification, as only one of the resulting 
triangular regions need be treated (cf. figure 2). 

In  this discussion the lower triangular region bounded by 

7 = 0 ,  o <  { < Z O ,  

7 = 5 ,  0 6 5 < Z O ,  

{ = Z o ,  O < T < Z O ,  

is considered. The boundary conditions across and on the symmetry line 7 = { 
are 

On 7 = 0, for all [, we specify 

Finally, u, 9, $, A and 8 must asymptote to the boundary-layer flow as g+ 00, 

q /c  -+ 0 and potential flow for { -+ 00, 7 < 5. The analysis of Pal & Rubin (1971) 
for the incompressible case has shown that the corner-layer variables decay 
algebraically into the outer layers, and hence, several terms in the asymptotic 
series are necessary to describe adequately the flow behaviour at a finite bound- 
ary { = 2,. 

u7 = a,, A, = A,, 9, = $,, 9 = +, e = 0. (3.1) 

u = ~ = + ~ = o ,  e =  $,, t = ~ , .  (3.2 U - C )  
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I+ 1 
I 
I- 1 

i l l  I 
J-lJJ+l 

c 
FIGURE 2. Finite-difference 

Corner-layerlboundary-layer matching 

The object of the following discussion is to find formal asymptotic expansions 

( 3 . 3 ~ )  

(3.3b) 

(3.3c) 

( 3 . 3 4  

(3 .3e)  

Note that the density appearing under the integral sign is the two-dimensional 
value. Since the two-dimensional boundary-layer solution is known in terms of 7, 
it is employed here to facilitate matching.? Derivatives withrespect to 7 are given 

t A three-dimensional density transformation analogous to that of Howarth-Dorod- 
nitsyn for the two-dimensional case does not exist, to the author’s knowledge. If such a 
transformation did exist, then any compressible corner-flow solution could be obtained by 
transforming it into incompressible form. 
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while 7 and are related by 

The coefficients u,, 8,, $,, $n and A, are assumed to depend on 7 and also on c, 
in that we assume a polynomial dependence on A = lnc. (See Pal & Rubin 
1971 for further details.) The first few terms of the asymptotic series do not 
depend on A, since the governing equations and boundary conditions can be 
satisfied with the omission of the a/ah terms. Since only the f i s t  3 terms, n = 0, 1,2, 
will be considered here, the resulting equations will be independent of A. Sub- 
stituting the asymptotic series (3 .3 )  into the governing equations (2.13, 2.14), 
we obtain recursive relations for the flow variables. (See Weinberg 1972 for a 
discussion of the generalized expansions.) 

The solutions of the equations for n = 0,1,2,  will now be discussed. 
Zeroth-order solution. For n = 0, the following equations are obtained: 

1 
8 0  = - $4, ( 3 . 4 a )  

GO 

(3 .4b )  

( 3 . 4 4  

u;+$bo- 4 = 0, ( 3 . 4 4  
CO 

where 8 0  = $0,+40p ro = 4 0 ” 0 ~ + ~ 0 ~ 0 ~ .  

The boundary conditions are, at  the surface 7 = 0, 

while, for 7 -+ 00, 

Comparing ( 3 . 4 4  with the Blasius equation 

u0 = $o = $o = A, = 0, 

uo = 1 +o(v -N) ,  8, = o(f-N) for N > 0. 

f”’+ff” = 0, 

it  is observed that a solution of ( 3 . 4 4 ,  satisfying all boundary conditions, is 

uo =f’ $J0 = C0f. ( 3 . 5 a ,  b )  

Solving (3.4a-c) for the remaining unknowns, we obtain 

+o = f ’ ,  8, =y/co, A, = zft+Gfy. ( 3 . 5 o e )  
CO 

These functions satisfy all the boundary conditions and (3.4 e )  identically. 
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First-order solution. Retaining terms of O(  5-l) in the asymptotic equations, we 
obtain 

( 3 . 6 ~ )  

A, = $;/c,, 81 = +;/go. (3.6c, d )  

The boundary conditions are, at  the surface 7 = 0, 

while, for + 00, 

u1 = 0 ( 5 - ~ ) ,  8, = 0(7-~) for N > 0. 

Combining (3 .6a,  b ) ,  q51 may be eliminated, and a third-order equation in u1 
is obtained: 

u1 = $1 = +l = A, = 0, 

u: + 2fu; +fu;2 + (f” + f f  ’) u1+ g; +fg; - 2yq1 = 0, 

cuo If 

(3.7) 

where 91 = T f  u1. 
0 

Defining Ul = 4+f% +g1, 
(3.7) may be transformed to 

rr;+fu;-2f’ul = 0. 

The only solution of this equation is 

u 1 -  = 0, = u1 3 0. (3.9) 

It is significant that the part of (3.7) involving u1 terms alone is identical with the 
incompressible equation derived by Pal & Rubin (1971) .  Thus, (3.8) is obtained 
independent of the compressibility. Therefore, any statement concerning the 
incompressible-flow case should be just as valid for the compressible flow. Libby 
& Fox (1963) have proved that eigenvalues of (3.8) do not exist. In a similar 
manner, it can be shown (Weinberg 1972) that 

(3.10) 

(3.11) Y-1 
= T, K + -- M2,f”(0),  2 

K = lim (vf’-f) = 1.21678. 

The function g,(ij) is identical with the Libby solution for the cross-flow velo- 
city w in the boundary layer, and is strictly valid only at  5 = co. Figures 3 ( a ,  b)  
show the variation of g,(?j) with respect to wall temperature and Mach number. 
The representations for w given by g,(v) and by (3.17b), for finite 5, are com- 
pared. 

where 

and 
7-m 

Finally, from (3 .6c ,d ) ,  we obtain 

(3.12) 
- p  , ’ -  

A, = 0, 0,  = --SAT). 
CO 
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0 4  0.8 1.2 1.6 2.0 - 1  2 -0.8 --0.4 0 

W l P  

6.3 

4.8 

t 

3.2 

W l P  
FIGURE 3. Asymptotic cross-flow profiles: (a )  adiabatic, (b)  cold wall (Tw/!&ag = 0.6). 

_ _ _ -  , Libby (1966); - , (3 .17b) at 2, = 9.60. 

The second-order (n = 2) equations can be obtained in a like fashion (Weinberg 
1972), and the solutions are 

(3.13a) 
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f” 
$2 = 7-+4f’, 

CO 
( 3 . 1 3 ~ )  

e - - - 7  5f” (” -+--f 2; n2J , 
- co c: (3.13d) 

In  Rubin & Grossman (1971) it  is shown that at n = 1 an arbitrary constant 
enters into the asymptotic series. The significance of this will be discussed shortly. 
With ( 3 4 ,  (3.9), (3.10), (3.12) and (3.13) we now have three terms in the 
asymptotic expansion for large 6 and 716 3 0. 

Corner-layerlpotential-$ow matching 
For min (7,c) + 00, it  must also be possible to match the corner layer to an outer 
irrotational flow. I n  order that the leading vorticity components vanish with 
exponential speed, we find that 

u = l+o(q-N) ( N  > 0); ( 3 . 1 4 ~ )  

and, from the Crocco integral, the temperature is a function of u only, so that 

T = 1 + 0 ( 7 - ~ )  ( N  > 0). (3.14b) 

From the streamwise vorticity component, 

Vq-Wc = o(7-N)  ( N  > 0). 

8 = o ( r - N )  ( N  > O ) ,  
These relations imply that 

A = 2 + 0 ( 7 - ~ )  ( N  > 0). 

( 3 . 1 4 ~ )  

(3.14d) 

(3.14e) 

It may be further shown, from the definition ( 2 . 1 2 ~ )  of 8, that 

w7-wc = o ( 7 - N )  ( N  > 0). (3.14.f) 

With the model-fluid assumption and (3.14b), the density also exhibits exponen- 
tial decay into the potential flow. Therefore, the following formulation will be 
independent of any explicit compressibility effects. We therefore seek conjugate 
harmonic functions for w and w, satisfying (3.14 c, f) and possessing the proper 
algebraic decay, as well as fulfilling all the required symmetric conditions. From 
the analysis of Pal & Rubin (1971), the following solutions for q5 and @ are 
obtained : 

($-i$) exp{&in) = (y-i<)exp{&k)- (2 /3 )4+4~~-1 -  (2/?)4~-2+0(~-3) ,  (3.15) 

where T = (7 +is) exp { - tin}, is a real constant to be determined, and p has 
previously been defined by (3.1 1). Note that compressibility effects enter into 
(3.15) through the parameter p, which is a function of Mach number and wall 
temperature. 
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v = O  7 = 6  5=z, 
M,= 0 Mq-Mg= 0 M = O  
v=o v = o  v=o 

TABLE 2 

Therefore, the asymptotic boundary conditions for 6 -+ co and all 7 become 

(3.16 a) 

(3.16d) 

(3.16e) 

The secondary velocities v and w can now be obtained from the series (3.16) 
and definition (2.12): 

With boundary conditions (3.1), (3.2) and (3.16), and the system (2.13), 
the problem is completely specified. As in the incompressible case, the final system 
(2.13) includes the differentiated forms of (2.12c,d). However, if harmonic mass 
and vorticity source terms V(7, g) and M ( 7 , c )  appear on the right-hand sides of 
(2.12c, d) ,  respectively, the final equations (2,13) would remain unchanged. 
We therefore seek solutions for which M and V vanish everywhere. The boundary 
conditions (3.1), (3.2) and (3.16) ensure the boundary values for M and V 
shown in table 2. 

When the error in x is a minimum IMI and I VVJ attain their minimum values, 
(2.12c, d )  will be satisfied to the accuracy of the finite-difference scheme and the 
maximum accuracy allowed by series (3.16). 
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~~ ~~~~ 

Method H 2 0  No. ofiterations Time ( s )  

AD1 0.40 9.60 80 40 
AD1 0.20 9.80 30 GO 
GS 0.40 9.60 GOO 60 

TABLE 3 

4. Numerical analysis 
Two finite-difference equations are employed in the numerical solution of the 

set of governing equations (2.13). These iterative techniques are conveniently 
categorized as either explicit or implicit, depending on whether a pivotal point 
is expressed in terms of other known or unknown values, respectively. 

Explicit methods are, in general, simple to program. However, they are limited 
by somewhat severe stability criteria, so that the grid spacing cannot be chosen 
arbitrarily. For instance, the incompressible-flow calculation of Rubin & Gross- 
man (1971) indicated that the step sizes were limited by the size of the domain 
(i.e. the choice of Zo) .  

The Gauss-Seidel method was adopted here for the initial calculations. Past 
success with this method for incompressible flow and the ease of computer coding 
outweighed any disadvantages associated with stability problems or slow con- 
vergence rates. A detailed discussion of this approach for the incompressible 
calculations can be found in Rubin & Grossman (1971). Solutions for a variety 
of stream conditions for both cold and adiabatic walls have been obtained. In 
many cases the convergence was quite slow or instabilities were encountered 
(Weinberg 1972). These results led the authors to consider a second numerical 
method both as a check on the converged Gauss-Seidel calculations, and in order 
to obtain more rapid solutions for wider range of flow conditions. The alternating- 
direction implicit (ADI) method of Peaceman & Rachford (1955) was chosen. 

The finite-difference approximations to the corner-layer equations and their 
implementation are presented in detail by Weinberg (1972)) where the two schemes 
are compared with regard to convergence rate, stability and ease of computer 
coding. Only a brief review is given here. It was shown that the AD1 and Gauss- 
Seidel techniques converge a t  approximately the same rate when the accelera- 
tion parameter of the AD1 method is unity. For values of this parameter less 
than unity, convergence improved, but the calculations were sometimes unstable. 
For values greater than 1.0 the convergence rate was poor. It should be noted 
that the diagonal boundary and explicit treatment of the vorticity boundary 
conditions could account for the poor performance of the AD1 method. For 
cases where stability was not a problem, the Gauss-Seidel method was preferred. 
I n  several instances where the Gauss-Seidel calculations were unstable, AD1 
results were obtained. Typical computer running times are given in table 3. 

The error associated with any of the converged solutions is a function of the 
error inherent in the finite-difference approximation, the truncation error a t  the 
boundary in series (3.161, and any inaccuracy associated with the constant x. 
The effect of these errors on the solutions is now briefly discussed. 
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It can be shown (Weinberg 1972) that retaining terms in the asymptotic series 
up to O(<-,) for u and 4, and up to O(<-I) for $ and 8, would be acceptable in 
obtaining solutions of approximately 10 % accuracy. An examination of the 
asymptotic series for the incompressible-flow case showed that neglecting higher- 
order terms had but a minor effect on the solutions. The numerical calculations 
have also established this fact. Calculations for compressible cases indicate that 
the errors incurred are well within the desired accuracy. We can conclude 
that the truncated asymptotic series applied a t  5 = 9.60 adequately represents 
the boundary conditions with the desired accuracy for most of the cases con- 
sidered. It is observed, however, that by raising the wall temperature andlor 
Mach number, the asymptotic boundary conditions must be applied at values of 
5 greater than those for the incompressible flow. This is due to the increase in 
boundary-layer thickness. Decreasing the wall temperature has the opposite 
effect: the viscous zone is thinner and the gradients near the wall increase. An 
examination of the leading terms in the asymptotic representation of 8, leads to 

Therefore, as T, --f 0, 8, -+ 00, and resolution becomes a severe problem. Finer 
meshes are required, and this results in longer computing times and increased 
computer storage. However, for the colder wall, and therefore thinner boundary 
layers, the asymptotic formulae are applicable at  somewhat smaller values of 
2, than those required for the heated wall cases. 

From the above considerations it is apparent that limitations must be placed 
on the flows that can be investigated by the methods presented herein. Calcula- 
tions indicate that flows with Mach numbers less than 2.0 and TWITstag > 0.40 
can be considered within the limitations previously specified. At higher Mach 
numbers, hypersonic interaction effects become important, and must be taken 
into account. Furthermore, the cold wall cases T,/T,,,, < 0.40 are generally 
important only for the higher Mach number flows. 

In  addition to the series truncation error, which is of 0 ( 2 ~ ~ ) ,  the finite-differ- 
ence discretization error is estimated to be O ( H 2 ) .  With 2, = 9.60 and H = 0.40, 
the dominant error results from the choice of step size. Reducing the mesh width 
to 0-20 should optimize the calculations. Finer grids are necessary to maintain 
this resolution in extreme cold wall cases. For problems where the discretization 
error can be estimated as a function of H ,  a very useful alternative to decreasing 
the step size is a simple extrapolation due to Richardson (see Smith 1965). This 
procedure was considered by Rubin 81 Grossman (1971). For a rectangular corner- 
layer region, with error of O(H2),  if c, and c2 denote solutions for H ,  and H,, 
respectively, with H ,  = 2H, an improved solution 5 is given by 

- q = L  3(4 0- z - f l1 ) .  

The error is then estimated to be O(Ht) .  All final solutions have been obtained 
with this extrapolation procedure. 

Finally, in the asymptotic analysis ($3) the appearance of an arbitrary con- 
stant x was discussed. The value of x is specified when the harmonic functions V 

FLM 56 49 
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l%l 

0.00 
0.50 
0.95 
1.50 
1-50 
2.00 
2.00 

T W  

0.60 
1.05 
1.18 
1.45 
0.87 
1.08 
0.70 

TUJ 

Tstag  

- 
0.60 
1.00 
1-00 
1.00 
0.60 
0.60 
0.40 

X 
- 0.9 
- 2.50 
- 3.00 
- 5.00 
- 2.50 
- 4.50 
- 1.50 

IMI- 
0.04 
0.02 
0.02 
0.06 
0.02 
0.04 
0.07 

I VInlaX 

0.03 
0.05 
0.03 
0.15 
0.05 
0.13 
0.10 

TABLE 4 

-6'o -1 
Adiabatic wall 

- 5.0 

-3.0 

x -3.0 

- 2.0 

-1.0 

n 

X 

" 
9 0 - 4 6 

M% T W I T , , ,  

FIGURE 4. Compressibility effects on X: ( a )  adiabatic ( b )  cold wall (TW/TBtag = 0.6). 

and iM introduced into (2.12c, d )  are filtered out. This is achieved by an iterative 
procedure identical with that presented by Rubin & Grossman (1971) for incom- 
pressible flow, and discussed in greater detail for compressible flow by Weinberg 
(1972). The optimum value of x associated with the minimum absolute values of 
M and V is generally found to occur when the integrated average value of M 
over the entire grid approaches zero (i.e. positive and negative contributions 
cancel). Table 4 presents representative compressible-flow conditions with the 
associated values of x and 1 Vlmax and 

The variation of x with Mach number and wall temperature has been deter- 
mined and is presented in figure 4. For a given ratio of wall temperature to stagna- 
tion temperature, x increases linearlywith M2,. Alinear variation of Xwith respect 
t o  TWITstag is aIso predicted, for fixed free-stream Mach number. 
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FIGURE 5. Streamwise velocity along symmetry line: (a) adiabatic, (b) cold wall 
( ~ w / % g  = 0.6). 

A B C A B C D 

-urn 0 0.95 1-50 0 2.0 1.5 
T,(a) 1.0 1.18 1.45 (b)  :*6 1.0 1.08 0.87 
x 1 - 2 6  -3.0 -5.0 1-0.9 -2-5 -4.5 - 2.5 

5. Discussion of numerical results 
The numerical solutions obtained for the compressible flows considered here are 

all in very good agreement with the predicted asymptotic behaviour determined 
in $3. The algebraic decay of the flow variables into the boundary layer 5 -+ co, 
r/c + 0 has been obtained numerically. In  addition, the solutions show that the 
normal velocity v approaches its asymptotic boundary-layer value somewhat 
more rapidly than the cross-flow velocity w. This is in agreement with the pre- 
dicted asymptotic decay. 

Figures 5 and 6 present the streamwise and secondary-flow velocities along the 
diagonal. Typical adiabatic and cold wall (Tw/Tstag = 0.6) cases are compared. 
Several interesting features are noted. The streamwise velocity exhibits a much 
more rapid decay into the outer potential flow, 7,C-t co, than do the secondary- 
flow velocities. The influence of Mach number and wall temperature on the corner 
layer is also evident in these figures. As in the case of the two-dimensional bound- 
ary layer, increasing the Mach number or heating the wall also thickens the 
corner layer. Figure 7 shows the streamwise velocity isovels. The effect of Mach 
number and wall temperature are also depicted. 

The skin-friction coefficient distributions as given in figure 8 show a monotonic 
increase toward the asymptotic two-dimensional value. There are no overshoots 
in the skin friction (or heat transfer) similar to those found experimentally, and 
theoretically, for the hypersonic interaction in the corner (see Rubin & Lin 1972). 
It is probable that the hypersonic corner interaction, with the appearance of 

49-2 
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0 0.8 1.6 2.4 3.2  

W(9,  9 )  W(9,  9 )  

FIGURE 6. Secondary velocity along symmetry line: (a) adiabatic, (6)  cold wall 
( T W / T , t , B  = 0.6) 
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FIGURE 7 .  Streamwise isovels: (a )  adiabatic, (b)  cold wall (TW/TEtag = 0.6). 
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FIGURE S. Skin-friction coefficient: ( a )  adiabatic, ( b )  cold wall (I,,,/IsLag = 0.6). 

A 3 c A B c D 
0.95 1.50 0 2.0 1.5 

T w  ( a )  - 1.18 1.45 ( b )  { i - 6  1.0 1.08 0.87 
x [-2.5 -3.0 - 5.0 -0.9 -2 .5  -44.5 - 2.5 

complex shock patterns associated with viscous-inviscid interaction, leads to 
these overshoots. 

From the present analysis, overshoots in the skin-friction coefficient cannot be 
completely ruled out for colder walls and higher Mach numbers. From the 
asymptotic behaviour of the skin-friction coefficient it is found that, for positive 
values of x, the asymptotic two-dimensional value will be approached from above. 

Prom figure4 itwould appear that, with colderwall boundary values, the constant 
x tends to increase and should pass through zero. With x > 0, overshoots in Cf 
will occur. 

Finally, a swirling motion is observed in the corner layer, but a closed vortical 
pattern is not established. The effect of raising the Mach number is to accentuate 
the swirling motion by increasing the cross-flow velocities which penetrate deeper 
into the corner layer. Cold wall calculations show that the swirl is diminished. 

The research was supported by the Air Force Office of Scientific Research under 
grant 70-1843 and Modification 70-1843A, project 9781-01. The work reported 
here was based on part of a dissertation submitted by B. C. W. to the faculty of 
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